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ABSTRACT
Due to the widespread use of Android devices and apps, it is im-
portant to develop tools and techniques to improve app quality and
performance. Our work focuses on a problem related to hardware
sensors on Android devices: the failure to disable unneeded sensors,
which leads to sensor leaks and thus battery drain. We propose the
Sentinel testing tool to uncover such leaks. The tool performs
static analysis of app code and produces a model which maps GUI
events to callback methods that affect sensor behavior. The model
is traversed to identify paths that are likely to exhibit sensor leaks
during run-time execution. The reported paths are then used to gen-
erate test cases. The execution of each test case tracks the run-time
behavior of sensors and reports observed leaks. Our experimental
results indicate that Sentinel effectively detects sensor leaks, while
focusing the testing efforts on a very small subset of possible GUI
event sequences.

1 INTRODUCTION
There are more than 2 billion active Android devices and 3.5 mil-
lion Android apps in the Google Play store, with many other app
stores also becoming popular (e.g., in China). It is important to
develop techniques and tools to improve app quality and perfor-
mance. Complex event-driven behavior and limited device resources
present challenges for developers. One challenge are various “leak-
ing” behaviors that can lead to energy-related inefficiencies [3–
5, 13–15, 22, 30].

The focus of our work is one instance of this problem: the leaking
of hardware sensors. Sensors in Android devices can track changes
in acceleration, rotation, proximity to screen, light, temperature,
pressure, humidity, etc. However, the use of sensors creates oppor-
tunities for energy inefficiencies. As a general Android developer
guideline, the app should always disable sensors that are not needed.
Failing to disable unneeded sensors—that is, sensor leaks—can drain
the battery. If possible, sensor leaks should be detected and elimi-
nated before an app is released in an app store.

We propose a testing approach targeting sensor leaks. The ap-
proach was implemented in the Sentinel tool for sensor testing
to detect leaks. The tool takes as input an Android APK, performs
static analysis of app code, and identifies sensor-related objects and
API calls. The static analysis produces a model which maps GUI
events to callback methods that affect sensor behavior. This model,
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referred to as the sensor effects control-flow graph, is traversed to
identify paths that are likely to exhibit sensor leaks during run-time
execution. The reported paths are then used to generate test cases.
The execution of each test case tracks the run-time behavior of
sensors and reports observed sensor leaks.

Sentinel uncovers two categories of violations of Android guide-
lines for sensor management. The first category identifies leaking
components that, during their lifetime, acquire a sensor but do not
release it. The second category identifies components that acquire
a sensor but do not release it when suspended for a long period of
time. Our experimental results indicate that Sentinel effectively
detects sensor leaks, while focusing the testing efforts on a very
small subset of possible GUI event sequences, as determined by our
targeted sensor-aware static analysis of app code.

2 ANDROID UIS AND SENSORS
In Android, the user interface (UI) thread is the main app thread.
Various windows are displayed in the UI and widgets inside these
windows can be the targets of UI events (e.g., “click”). These events
could have several effects, including UI changes such as opening
a new window. The main category of windows is activities, which
are the core components of Android apps. Two other categories
are menus and dialogs. We will discuss only activities and will
use “window” and “activity” interchangeably; however, menus and
dialogs are also handled by Sentinel.

2.1 Running Example
Figure 1 shows a simplified example derived from a sensor leak
uncovered by Sentinel. Calculator Vault is a vault app used to hide
photos and other documents. The app has over a million downloads
in Google Play. The example shows two of the app’s activities:
SettingActivity and UnlockActivity. The first activity has a
button widget (btn at line 4); the second one has a switch widget
(sc at line 17) which is a toggle to select between two options.

An app user can trigger events on widgets; as a result, event han-
dling callback methods are executed. For example, if btn’s button is
touched, onClick (lines 7–13) is invoked by the Android platform
code. In this example, using startActivity at line 12, the event
handler opens a new window corresponding to UnlockActivity.
The new window is pushed on top of a window stack, imme-
diately above the window for SettingActivity. When eventu-
ally this new window is closed, it is popped from the stack and
SettingActivity is redisplayed. As another example, when the
state of switch sc changes, onCheckedChanged (lines 24–27) is in-
voked. As discussed later, this event handler registers a listener for
the accelerometer sensor.

Upon a UI event, a new window could be opened and pushed
on the window stack, or currently-alive window(s) could be closed
and popped from the stack. These open/close effects could be due
to (1) code inside callback methods, or (2) platform-defined default
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1 class SettingActivity
2 extends Activity implements OnClickListener {
3 onCreate(...) {
4 Button btn = findViewbyId(R.id.rl_unlockSetting);
5 btn.setOnClickListener(this); ...
6 }
7 onClick(View v) {
8 switch(v.getId()) {
9 ...
10 case R.id.rl_unlockSetting:
11 Intent i = new Intent(UnlockActivity.class);
12 startActivity(i); break;}
13 }
14 }
15 class UnlockActivity extends Activity {
16 onCreate(...) {
17 SwitchCompat sc = ...;
18 SensorManager sm = ...;
19 Sensor accel = sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
20 SensorEventListener shakeListener = new SensorEventListener {
21 onSensorChanged(...) {
22 if (...) { sm.unregisterListener(this); }}};
23 sc.setOnCheckedChangeListener(new OnCheckedChangeListener{
24 public onCheckedChanged(View v) {
25 ...
26 sm.registerListener(shakeListener, accel);}});
27 }
28 onDestroy() { ... }
29 }

Figure 1: Example derived from Calculator Vault.

behavior for certain events. As a result, lifecycle callback methods
could be invoked. Figure 1 shows lifecycle callbacks onCreate (in
both activities) and onDestroy (in the second activity). There are
additional lifecycle callbacks not shown in the figure. For example,
when line 12 is executed, in the general case the sequence of invoked
callbacks would be onPause1, onCreate2, onStart2, onResume2,
onStop1; here the subscript denotes the activity.

2.2 Sensors in Android Apps
There are multiple categories of sensors on an Android device.
Each category is represented by an integer constant defined in
class android.hardware.Sensor. For example, all accelerometer
sensors are represented by Sensor.TYPE_ACCELEROMETER. A hard-
ware sensor is represented by a sensor object, instantiated from
android.hardware.Sensor. These sensor objects are created by
the Android framework and will not be replaced or destroyed un-
less the app process is killed. From our case studies, we observed
that developers rarely use more than one sensor from a sensor
category: typically, only the default sensor is obtained, by calling
getDefaultSensor. At line 19 in Figure 1, accel refers to the de-
fault accelerometer sensor object, which is used by the application
to detect when the user shakes the device in order to unlock it.

To obtain sensor data, the programmer registers a sensor event
listener. Such a listener is an instance of SensorEventListener
(line 20). Callback onSensorChanged is invoked on this listener
whenever new sensor data is available. Line 26 shows how a listener
is registered with a sensor object. The sensor hardware will be
enabled when there exists any listener registered to listen to the
sensor’s changes. The hardware will be turned off when all listeners
are removed via unregisterListener (illustrated at line 22).

The sensor leak in the running example occurs as follows. Af-
ter UnlockActivity is opened, the user may toggle sc’s switch in
the UI, which will invoke onCheckedChanged and as a result will
(1) register shakeListener’s listener object with accel’s sensor
object, and (2) wait for a shake gesture from the user to unlock

the vault. Whenever the device is moved, onSensorChanged is
invoked with information about the physical movement. If this
movement is above some threshold (checked at line 22), it is con-
sidered to be “shake to unlock” which releases the listener via
unregisterListener and unlocks the vault. However, if the user
does not shake the device, the listener will continue to listen for
updates. If the user quits this app and makes the phone station-
ary, UnlockActivity will be closed. At that time, lifecycle callback
onDestroy (line 28) does not release the sensor either. Thus, the
window that acquired the sensor does not release it, which keeps
the sensor alive and drains the battery. This sensor will still be
alive after the user quits the app, as the application process remains
active upon quitting. Using Sentinel, we generated a test case that
triggers this behavior on an Android device.

3 GENERATION OF TEST CASES
Window transition graph. The starting point of test generation is a
static app model referred to as the window transition graph (WTG)
[31]. Graph nodes represent windows such as activities, dialogs,
and menus; activity fragments are not represented. An edge e =
wi → w j indicates that when window wi is interacting with the
user, some GUI event can cause windoww j to be displayed and to
begin interacting with the user. It is possible that i = j, in which
case the current window does not change. As discussed earlier,
callback methods are executed during a transition fromwi tow j .
The WTG contains information about (1) the GUI event/widget that
triggered the transition, (2) the callback methods executed during
the transition, and (3) the corresponding window open/close effects.
Sensor effects control-flow graph. Next, we define the sensor effects
control-flow graph (SG), a static model derived from the WTG and
further analysis of callback methods along WTG edges. Paths in
this graph correspond to GUI test cases. The graph is SG = (N ,E,L)
where N and E are the node set and edge set from the WTG and
L : E → Σ∗ defines a label l (e ) for each e ∈ E. The label is a sequence
of symbols from set {open(wi ), close(wi ), acquire(sk ), release(sk )}.

Symbols open(wi ) and close(wi ) denote the opening/closing of
a windowwi ∈ N . Symbols acquire(sk ) and release(sk ) denote the
acquiring and release of a sensor sk . The set of sensor abstractions
sk will be described later in this section. To determine label l (e ) for
an edge e , we analyze the bodies of the callback methods executed
during the transition represented by e (Section 3.3). Note that some
WTG self-edges may not have any effects that correspond to such
symbols; these edges are not included in SG.
Example. Figure 2 shows SG for the running example. Node w1
corresponds to activity Main, which is not shown in the code from
Figure 1. A widget event handler in w1 opens SettingActivity.
The self-edge forw3 corresponds to a change in the state of switch
widget sc; the invoked callback onCheckedChanged acquires the
accelerometer sensor, denoted by s in the figure. Note that this
example is rather simple. However, we have seen many apps where
a single edge contains several symbols (e.g., it represents the open-
ing/closing of several windows, or the acquiring of several sensors).

3.1 Sensor Leak Patterns
Using SG, we define two sensor leak patterns. These patterns are
similar to GPS leaks observed in prior work [30]. In Android, the



Sentinel: Generating GUI Tests for Android Sensor Leaks AST’18, May 28–29, 2018, Gothenburg, Sweden

w1:Main

w2:SettingActivity

 open(w2)  close(w2) 

w3:UnlockActivity

 open(w3)  close(w3) 

 acquire(s) 

Figure 2: SG graph for the running example.

GPS is considered different from sensors and is managed via com-
pletely different APIs. That prior work did not consider sensors and
did not perform test generation or execution. Our formulation is
inspired by context-free language reachability [23], a well-known
approach to define a set of paths in a labeled graph using a context-
free language. Each SG path contains a sequence of edges; the
concatenation of their labels forms a path string. If this string be-
longs to a pre-defined language, the path is “suspicious” and will
be used to generate a test case. The focus on these particular sus-
picious paths is motivated by prior work that identifies them as
potential sources of leaks [4, 5, 15, 30].
Leaks beyond window lifetime. We start by defining a language
L1 (wi ) describing SG paths that represent the lifetime of a window
wi . By intersecting this language with several regular languages
over sensor acquire/release effects, we will capture one common
pattern of sensor leaks. The subscript indicates that this is the first
pattern being considered. A second pattern, described later, will be
based on another language L2 (wi ).

L1 (wi ) is similar to classic balanced-parentheses languages:

S1 → open(wi ) Bal close(wi )
Bal → open(w j ) Bal close(w j ) | Bal Bal | Sen | ϵ
Sen → acquire(sk ) | release(sk )

A string corresponds to a run-time execution scenario in which
windowwi is opened, a number of other windows are opened and
closed, and at the end wi itself is closed. During the execution
described by an L1 (wi ) string,wi is pushed on top of the window
stack, additional push/pop operations are performed on top ofwi ,
and at the end wi is popped from the stack. Any string from the
language describes a possible lifetime forwi .

To define the correct behavior for sensor effects, we define a
regular language R (sk ) for each sensor sk , using a deterministic
finite automaton F = (Q, Σ,δ ,q, f ). Here Q = {q, f } is the set of
states, with q being the initial state and f being the final state. The
input alphabet Σ is the set of symbols defined earlier. The transition
function δ : Q × Σ → Q is shown in Figure 3. The figure shows
only transitions for symbols acquire and release for the sensor of
interest sk . For the rest of Σ (open/close, as well as acquire/release
for other sensors), there are self-transitions in both states.

If a string belongs to the language defined by F , it represents a
leak of sensor sk . Note that in Android it is possible to perform suc-
cessive acquire operations on the same sensor without in-between

q

release

facquire
release

acquire

Figure 3: Finite automaton F .

release operations; the second, third, etc. acquire have no effect.
Similarly, it is possible to have successive release operations with-
out in-between acquire; all but the first release are no-ops. Finally,
it is also possible to execute release operations on a sensor that was
never acquired. All these scenarios are captured by F .

Consider language P1 (wi , sk ) = L1 (wi ) ∩ R (sk ). If there exists
an SG path whose string is in P1 (wi , sk ), the lifetime of windowwi
acquires sensor sk without releasing it, and thus matches our first
pattern of sensor leaks. Any such path is a static candidate for a
run-time sensor leak. Of course, due to the conservative nature of
static analysis, it is possible that a static candidate does not actually
trigger a sensor leak during execution. Thus, in Sentinel a static
candidate path is used to generate a test case whose execution is
observed for an actual run-time leak.
Leaks in suspended state. The second pattern of sensor leaks will be
illustrated using the example in Figure 4. CSipSimple is an open-
source VoIP app that has been used by several commercial VoIP app
which have more than a million downloads on Google Play Store.
InCallActivity will register a listener for the proximity sensor in
onCreate and will release this listener in onDestroy. This example
does not exhibit the leak pattern described earlier: by the time
the activity is destroyed, the sensor is released. However, another
possible scenario is when the activity is suspended for a long period
of time (e.g., hours). For example, if the user presses the HOME
button, the app is put in the background but the sensor is still active.

To formalize this second pattern of sensor leaks, we add a symbol
suspend(wi ) for each window wi . Graph SC is augmented as fol-
lows: for each windowwi a new node w̄i is added to represent the
suspended state ofwi . An edgewi → w̄i is labeled with symbols
representing the sensor effects of lifecycle callbacks (e.g., onPause)
executed before entering the suspended state. The last symbol on
the edge is suspend(wi ). Another edge w̄i → wi captures the sen-
sor effects of resuming the app (e.g., sensors being reacquired in
lifecycle callback onResume). Figure 4 illustrates these two callbacks
at lines 4 and 5. In this app, both callbacks have no effect on sensors.

As before, we define a language to express how a window wi
reaches a suspended state. This language L2 (wi ) is:

S2 → open(wi ) Bal suspend(wi )

where Bal was defined earlier. Language P2 (wi , sk ) = L2 (wi ) ∩
R (sk ) captures the scenario wherewi is suspended without releas-
ing sensor sk . This is the second sensor leak pattern we consider.

3.2 Generation of Test Cases
For any wi , all path strings in language P1 (wi , sk ) can be deter-
mined by traversing SG paths starting at wi and maintaining a
stack corresponding to window open/close events. The stack ele-
ments are open and close symbols. A new open symbol is pushed
on top of the stack. A new close(w j ) is allowed only if the current
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1 class InCallActivity extends Activity {
2 CallProximityManager proximityManager = ...;
3 onCreate(...) { proximityManager.startTracking(); ... }
4 onResume() { ... }
5 onPause() { ... }
6 onDestroy() { proximityManager.stopTracking(); ... }
7 }
8 class CallProximityManager implements SensorEventListener {
9 SensorManager sm = ...;
10 Sensor proximitySensor = sm.getDefaultSensor(Sensor.SENSOR_PROXIMITY);
11 onSensorChanged(...) { ... }
12 startTracking() {
13 sm.registerListener(this, proximitySensor); ... }
14 stopTracking() {
15 sm.unregisterListener(this); ... }
16 }

Figure 4: Example derived from CSipSimple.

d.screen.on() # turn on device screen
killApp("com.calculator.vault") # kill target app to clean up acquired resources
oldsensors = readAssociatedSensors() # gather currently-acquired sensors
startActivity("com.calculator.vault", "com.calculator.vault.UnlockSettingActivity")
d(resourceId="com.calculator.vault:id/shake_btn").click() # click the switch widget
d.press.back() # press the back button
newsensors = readAssociatedSensors() # gather acquired sensors after execution
# report differences between newsensors and oldsensors

Figure 5: Example of generated test case.

stack top is open(w j ) for the same window w j ; as a result, the
top stack element is popped. During path traversal, the state of
finite automaton R (sk ) is updated based on symbols acquire and
release. Since typically there would be several possible sensors sk ,
several finite automata for the corresponding R (sk ) would be main-
tained. The path strings for P2 (wi , sk ) can be generated similarly.
Since the number of paths is typically infinite, we define a finite
subset of paths using two criteria: (1) a path cannot contain the
same edge more than once, and (2) the number of open and close

symbols along a path cannot exceed a certain pre-defined limit k
(our implementation uses k = 4). The second criterion captures the
complexity of sequences of GUI control-flow events, regardless of
how these events affect sensors. These two restrictions control the
number and length of generated test cases.

Given an SG path generated as described above, it can be mapped
to a sequence of GUI events using information available in theWTG.
For example, for the graph in Figure 2, the path with edge labels
open(w3), acquire(s ), close(w3) will be mapped to the test case
shown in Figure 5. The test case uses a Python wrapper for Google’s
UI Automator testing framework [28]. Several low-level details of
the test case are omitted for brevity. Section 4 provides additional
details on how such test cases are generated and executed.
Test case filtering. We employ two filtering techniques to reduce
the number of generated test cases. First, note that all paths in a
particular set P1 (wi , sk ) are in some sense equivalent: they exhibit
the same pattern, for the same window wi and sensor sk . Thus,
when generating test cases, we select only one path from each
P1 (wi , sk ) set—specifically, any minimal-length path in that set.
Similar filtering is applied to any P2 (wi , sk ).

Next, consider SG for the running example. The path with la-
bels open(w3), acquire(s ), close(w3) is in language P1 (w3, s ). But
the path with labels open(w2), open(w3), acquire(s ), close(w3),
close(w2) is in language P1 (w2, s ). It is redundant to generate test
cases for both paths: from the point of the view of a programmer,
the “blame” should be assigned to activityw3 because that activity

was responsible for acquiring (but not releasing) the sensor. Thus,
only a test case for the first path should be generated and executed.

To formalize this notion, consider again P1 (wi , sk ). During the
traversal of a path with matching open and close symbols, we can
observe when the finite automaton F for R (sk ) transitions to its
final state f . Such a transition corresponds to acquiring sensor sk .
When the transition occurs, we can record the current top symbol in
the stack. This must be some open(w j ) symbol. If, later in the path,
another transition to state f in F occurs, the old record of the stack
top would be discarded and the new stack top would be recorded.
When a path is determined to be in P1 (wi , sk ), it is reported only
if the last recorded stack top is open(wi )—that is, only if wi was
the currently-active window when sk was last acquired. The same
criterion is used for P2 (wi , sk ).

3.3 Static Sensor-Related Abstractions
A sensor sk described earlier is actually a pair ⟨l ,o⟩ of a sensor
listener l and a sensor object o. For example, in Figure 1 the sen-
sor being analyzed is a pair of the SensorEventListener object l
referenced by shakeListener and the Sensor object o referenced
by accel. To determine these sk , our analysis first creates static
abstractions of Sensor objects. One static object o per sensor type
(e.g., accelerometer, proximity) is created. Next, propagation for
constants Sensor.TYPE_* is used to determine which sensor types
reach calls to getDefaultSensor. The sensor objects o returned by
such calls are then propagated to calls to registerListener.

The listener objects are created by instantiating classes that im-
plement interface SensorEventListener. Each such new expres-
sion corresponds to a static listener object l . These objects are also
propagated to calls to registerListener. For every l and o that
reach some such call, the analysis creates a corresponding sensor
abstraction sk = ⟨l ,o⟩. Each such call is considered an instance of an
“acquire” operation for sk . Similarly, calls to unregisterListener
are instances of “release” operations. Note that in both Figure 1
and Figure 4, the call to unregisterListener takes as a parameter
the listener but not the sensor object. This method has two ver-
sions: one that takes as parameters both l and o, and another that
takes only l . In the latter case, the call is considered to be a release
operation for any sk = ⟨l , . . .⟩.

Recall that graph SG (illustrated in Figure 2) is derived from the
window transition graph [31].WTG edges are labeledwith callbacks
invoked at run time—e.g., lifecycle callbacks onCreate/onDestroy
and event handler onCheckedChanged in Figure 1. Each such call-
back is analyzed to determinewhether it contributes any acquire(sk )
or release(sk ) symbols to the corresponding SG edge.

This analysis of a callback methodm considersm and its transi-
tive callees in the app code. If any one of those methods contains an
acquire operation for some sk , it is necessary to checkwhether there
is an interprocedural path from that operation to the exit ofm that
is free of a corresponding release of sk . If such a path exists, callback
m contributes symbol acquire(sk ). Callbacks onCheckedChanged
in Figure 1 and onCreate in Figure 4 are examples of this case. It is
also necessary to check whether every interprocedural path from
the entry to the exit of m contains a release operation for sk . If
this is the case, the execution ofm is guaranteed to release sk and
the callback contributes symbol release(sk ). Callback onDestroy in
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Figure 4 illustrates this case. Note that a callbackm could contribute
both a release operation and an acquire operation for the same sk
(e.g., if it releases the sensor and then re-acquires it). In this case
the analysis ofm results in the string release(sk ), acquire(sk ).

In addition to lifecycle callbacks and GUI event handler call-
backs, we also need to consider callback onSensorChanged (illus-
trated at lines 21–22 in Figure 1). Whenever a listener l is reg-
istered with a sensor object o, the listener is (almost) immedi-
ately notified of the current value of the sensor data, via an in-
vocation of onSensorChanged on l . It is possible that this invoca-
tion unconditionally releases the sensor, and we have seen such
examples in real apps. To account for this possibility, for each
acquire(sk ) where sk = ⟨l ,o⟩, we identify the corresponding call-
back onSensorChanged for l and analyze it using the callback analy-
sis described earlier. The contributions of the callback are appended
at the end of each acquire(sk ) symbol in SG. For the example in
Figure 1, the callback contains a release operation but this operation
does not occur along every path, due to the if statement. If, hypo-
thetically, the callback did not contain this if, it would contribute
release(s ). In this case, the self-edge for w3 in Figure 2 would be
labeled with acquire(s ), release(s ).

4 TOOL IMPLEMENTATION
4.1 Test Generation
Test generation in Sentinel was implemented in the Soot frame-
work [27]. The starting point of the implementation is the publicly-
available Gator analysis toolkit for Android [8] which contains
an implementation of the WTG representation [31]. Rather than
explicitly building the sensor effects control-flow graph SG, our
implementation directly uses the WTG. The analysis works in two
stages. First, acquire(sk ) and release(sk ) symbols are introduced
along WTG edges using the analysis described in Section 3.3. Next,
SG paths are traversed to decide whether they exhibit the targeted
patterns of open/close and acquire/release. To reduce the number
of test cases, the analysis identifies equivalence sets of edges: if
two edges have the same source, target, and label, they are equiv-
alent. Only one edge per equivalence class is considered during
path traversals. Test generation maps an SG path to a sequence of
calls to UIAutomator API calls. Widgets are referenced using their
ids defined in XML layout files or in setId calls in the code, as
determined by Gator [24]. If widgets do not have static ids (e.g., list
items), a test case cannot be generated. For widgets that require
user input (e.g., EditText), manual post-processing is needed; we
have seen a very small number of cases in which this occurs.

4.2 Test Execution
The generated test cases are executed using a Python wrapper for
UI Automator [28, 29]. This framework allows testing to be con-
trolled from a computer with direct access to the Android Debug
Bridge (ADB), which is necessary for run-time sensor leaks mea-
surements. Given a path reported by the static analysis, Sentinel
generates code which sets up the test case, starts the first activity
on the path using an Android intent, and triggers the necessary
GUI events. A simplified example of such code was presented in
Figure 5. Depending on the application, it may be necessary to
perform additional steps by the tester to fully set up the test case:

for example, for the calculator vault app, it is necessary to setup a
password for unlocking before the rest of the app can be used.

Acquired sensors with information about listener’s package
names and sensor types can be queried using dumpsys command
in ADB. Each generated test case performs this measurement at the
start and at the end of its execution (readAssociatedSensors in
Figure 5). If a sensor is not at the start but is active at the end of the
test case, and if the listener’s package name is the same as the target
application, a leak report will be generated. In our experiments, we
executed the test cases and observed the sensor on a Google Nexus
5X smartphone with Android 7.1.2.

5 EVALUATION AND CASE STUDIES
We considered the entire set of apps in the F-Droid repository, as
well as the top 100 apps from each category of Google Play. The
evaluation of Sentinel was performed on the entire subset of
apps that contained sensor listeners (a total of 709 apps). The static
analysis identified 18 apps for which the code exhibited the sensor
leak patterns described earlier. Table 1 shows measurements for
these apps. The first six apps are from F-Droid (also available at
http://web.cse.ohio-state.edu/presto) and the rest are from Google
Play. Column “Class” shows the number of classes in the app. This
number includes classes in libraries that are included in the app.
Our analysis considers the code in all these classes and makes
no distinction between app code and code in third-party libraries.
Column “Stmt” contains the number of Soot IR statements for these
classes. Columns “Node” and “Edge” show the total number of SG
nodes and edges, respectively.

The next six columns show measurements for the number of
SG paths. Under “L paths” are included the number of paths with
matching open and close symbols—that is, paths from languages
L1 and L2 (Section 3.1) limited by parameter k = 4 and without
duplicated edges (Section 3.2). For many applications, the number
of such paths is in the thousands. Executing test cases for each such
pathmay be expensive. However, it is possible to reduce this number
significantly by performing our static sensor analysis. The analysis
identifies GUI event handlers and lifecycle callbacks that trigger
acquire and release symbols; based on this, it determines L1 or L2
paths that exhibit the sensor leak patterns. Columns “L ∩ R paths”
show the numbers of paths that match the leak patterns. Clearly,
significant reduction in the number of paths can be achieved. For
further reduction, we use two filtering techniques to select the
“guilty” window and to choose minimal-length paths (Section 3.2).
Columns “Tests” shows the actual number of test cases generated
by Sentinel after this filtering. Again, significant reduction is
observed, ultimately producing only a few test cases per app. These
measurements demonstrate that static analysis of app code can
successfully identify only a small subset of possible GUI event
sequences that need to be executed at run time.

Columns “Leaks” show the number of executed test cases that
resulted in an observed run-time leak. Columns with “–” represent
test cases that could not be executed, as described shortly. As can
be expected, not every executed test case leads to leaking behavior,
due to the conservative nature of static analysis. For 12 apps, the
test cases exposed sensor leaks. Later we discuss examples of test
cases that did not have leaks. It is worth noting that the apps listed
in the table are not “toy” projects: in particular, the apps from
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Table 1: Applications, paths, and tests.

App size L paths L ∩ R paths Tests Leaks Time

Application Class Stmt Node Edge P1 P2 P1 P2 P1 P2 P1 P2 (sec)

Mtpms 37 3148 20 38 7 8 6 6 1 1 1 1 0.03
Drismo 325 24592 232 402 1739 718 320 512 1 1 1 1 1.1
Geopaparazzi 1467 149469 273 524 615 721 24 24 1 1 1 1 2.5
Itlogger 296 30516 30 77 24 44 7 24 1 2 1 2 0.7
AIMSICD 921 79438 59 136 67 69 4 2 1 1 1 1 0.8
Coregame 44 1988 3 7 2 2 2 2 1 1 1 1 0.07

NightVisionCamera 408 44399 74 93 5 25 0 16 0 1 0 – 0.5
Voxofon 2637 184406 451 1084 4011 994 0 2 0 1 0 1 9.1
VRVideoPlayer 334 24296 13 29 5 8 2 2 1 1 0 0 0.7
MobinCube 502 67186 959 1149 12735 83209 3155 3907 3 3 0 0 37.1
CSipSimple 1319 111659 57 223 750 402 0 100 0 1 0 1 10.7
Calculator Vault 2025 137364 220 694 49064 13837 1128 3108 2 2 2 2 179.9
Comebacks 160 21246 67 96 46 50 0 16 0 1 0 – 0.2
Pushups 956 87545 660 1434 14460 2607 0 2 0 1 0 0 2.2
Dogwhistier 2415 181626 125 302 2257 1739 25 27 1 1 1 1 49.2
Hideitpro 3315 227087 807 1602 5062 1434 1040 1321 0 1 0 1 12.5
LikeThatGarden 1678 115092 634 1748 575773 201332 8165 21425 1 1 1 1 70.8
MyMercy 907 74914 258 629 286 400 0 5 0 1 0 – 24.1

Google Play are among the most popular in their categories and
have many thousands of downloads from users. These results show
that even popular applications can contain sensor leaks and our
test generation approach can expose these leaks successfully.

Test generation time, in seconds, is shown in column “Time”.
It includes callback analysis of acquire and release effects, path
checking, and test case generation. These measurements indicate
that the cost of code analysis and test generation is practical.

Next, we briefly present several case studies. For F-Droid apps,
we considered the publicly-available source code. For Google Play
apps, we used the jadx decompiler to study the app code.
CSipSimple. This VoIP app was illustrated in Figure 4. Activity
InCallActivity will be started by an Android intent broadcast
when there is an incoming or an outgoing call. When this activity
is launched, lifecycle callback onCreate will be invoked and its
callee method startTracking will acquire the proximity sensor.
The activity does release the sensor in stopTracking, which is
invoked by callback onDestroy. However, if a user presses the
HOME button during the call and navigates to other applications,
e.g., for browsing a web page or looking up a contact, the acquired
sensor will still be held by InCallActivity even though it is not
responding to user interactions.
Geopaparazzi. This F-Droid app, which is also available in Google
Play, is used for engineering and geologic surveys. Figure 6 shows
the simplified code for the leak. The app uses a wrapper class
SensorManagerL to process all sensor-related operations. (We use
this name for brevity; in reality, this is app class eu.hydrologis.
geopaparazzi.SensorManager.) The class implements the single-
ton pattern. At line 12, method startSensorListening registers
a listener for the accelerometer. This method is called during the
singleton object creation (line 8). GeoPaparazziActivity’s call-
back onCreate calls init, which instantiates the singleton and
acquires the sensor. The only method that releases the sensor is

1 class SensorManagerL implements SensorEventListener {
2 SensorManagerL sml;
3 SensorManager sm;
4 static SensorManagerL getInstance(...) {
5 if (sml == null) {
6 sml = new SensorManagerL();
7 sm = (SensorManager) getSystemService(SENSOR_SERVICE);
8 sml.startSensorListening();}
9 return sml; }
10 void startSensorListening() {
11 Sensor accel = sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
12 sm.registerListener(sml, accel); ... }
13 void stopSensorListening() { sm.unregisterListener(sml);}
14 void onSensorChanged(...) {...} }
15 class GeoPaparazziActivity extends Activity {
16 SensorManagerL sml;
17 void onCreate(...) { init(); ... }
18 void init() { sml = SensorManagerL.getInstance(); } }

Figure 6: Example derived from Geopaparazzi.

stopSensorListening (line 13). However, this method is not called
by any app component. Once the activity turns on the accelerometer
sensor, it can only be turned off by killing the app.
mTpms. This app from F-Droid is a motorcycle tire pressure monitor
system reader. It uses the device’s light sensor to detect changes
of ambient light. It will change the background and text to dark
colors when it detects that light level is below a certain threshold.
In the onCreate method of the main activity, the app obtains the
sensor object and registers a listener for it. However, there is no
app code that unregisters this listener. Therefore, the light sensor
will be turned on when this application is launched and will remain
on unless this application is killed.
Non-executable test cases. Three generated test cases could not be
executed (“–” table entries). Our tests use an explicit intent to open
the first activity in a test case. This is a typical approach for unit
testing for Android, but in those three cases the activity crashes
when opened. We also attempted, unsuccessfully, to trigger these
activities using GUI sequences that start from the main app activ-
ity. For MyMercy, such a sequence requires a pre-existing medical
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account, which we are not able to obtain. For NightVisionCamera
and Comebacks, the problematic activity is supposed to display a
full-screen ad when the user clicks on an ad banner, but we were
unable to trigger these ads on our device or in the emulator.
Test cases without leaks. For three apps, the test cases do not pro-
duce run-time leaks. In all three cases there are classes containing
methods which override the same methods in their superclasses.
The subclass methods acquire sensors and leak them. However,
these subclasses are never instantiated at run time. Due to the use
of class hierarchy analysis, when our analysis encounters an invo-
cation of the superclass method, it incorrectly determines that the
called method could be from the defective subclass. This impreci-
sion causes the false positives. This is a well-known limitation of
class hierarchy analysis. There are many options for more precise
call graph construction [25], but they need to be adapted to the
framework/callback-driven control flow in Android apps.

6 RELATEDWORK
Test generation for Android. There are various techniques for auto-
mated testing for mobile apps [7, 11, 12, 26]. The Monkey testing
tool [20] generates UI events randomly. Android GUI Ripper [1]
and MobiGUITAR[2] generate test cases based on dynamically built
GUI models. Yang et al. [32] explore the application dynamically,
but use static analysis to determine relevant UI elements. Crash-
Scope [21] uses a similar model-based approach for detecting and
reporting run-time crashes. Work by Zhang et al. [33] generates
UI tests based on a static model to expose resource leaks. It does
not use static analysis to reduce duplicated tests and does not an-
alyze acquire/release sequences for these resources. Jensen et al.
[10] generate event sequences using a UI model and event handler
summaries derived from static analysis. Examples of other relevant
tools are EvoDroid [18], Dynodroid [17], SwiftHand [6], PUMA [9],
and TrimDroid[19].
Leak detection. There is a body of work on leak detection for An-
droid. Some approaches use run-time analysis. GreenDriod [15]
detects energy related resource underuntilization and leaks using
Java PathFinder, based on a hybrid UI model. A similar approach by
Banerjee et al. [3] uses a modified version of Dynodroid [17] to per-
form dynamic GUI ripping, followed by analysis of energy-related
leaks either dynamically [3, 4] or using a hybrid dynamic/static ap-
proach [5]. Ma et al. [16] developed a dynamic leak detector based
on UI traversal and memory profiling. Unlike these techinques, our
approach uses a purely static analysis that aims to focus the testing
efforts on a small subset of possible run-time behaviors.

7 CONCLUSIONS
This work demonstrates that is is possible to automatically generate
effective tests for sensor leaks in Android apps. While there are
many possible GUI event sequences, sensor-aware static analysis
can reduce dramatically the number of event sequences executed
during testing. Our evaluation confirms the utility of the proposed
Sentinel testing tool in exposing sensor leaks in realistic apps.
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