Static Detection of Energy Defect
Patterns in Android Applications

Haowei Wu

Shenggian Yang

Atanas Rountev

Ohio State University, USA
{wuhaow,yangs,rountev }@cse.ohio-state.edu

Abstract

For static analysis researchers, Android software presents a wide
variety of interesting challenges. The target of our work is static de-
tection of energy-drain defects in Android applications. The man-
agement of energy-intensive resources (e.g., GPS) creates various
opportunities for software defects.

Our goal is to detect statically “missing deactivation” energy-
drain defects in the user interface of the application. First, we define
precisely two patterns of run-time energy-drain behaviors, based on
modeling of Android GUI control-flow paths and energy-related
listener leaks along such paths. Next, we define a static detection
algorithm targeting these patterns. The analysis considers valid in-
terprocedural control-flow paths in a callback method and its tran-
sitive callees, in order to detect operations that add or remove lis-
teners. Sequences of callbacks are then analyzed for possible lis-
tener leaks. Our evaluation considers the detection of GUI-related
energy-drain defects reported in prior work, as well as new defects
not discovered by prior approaches. In summary, the detection is
very effective and precise, suggesting that the proposed analysis is
suitable for practical use in static checking tools for Android.

Categories and Subject Descriptors F.3.2 [Logics and Meaning
of Programs]: Semantics of Programming Languages—Program
analysis

General Terms Algorithms, experimentation, measurement

Keywords Android, GUI analysis, static analysis, energy

1. Introduction

The computing field has changed significantly in the last few years
due to the exponential growth in the number of mobile devices such
as smartphones and tablets. In this space, Android is the domi-
nant platform [12]. For static analysis researchers, Android soft-
ware presents a wide variety of interesting challenges, both in terms
of foundational control-flow and data-flow analysis techniques and
in terms of specific analyses targeting software correctness, robust-
ness, performance, and security.

The target of our work is static detection of energy-drain defects
in Android applications. For mobile devices, the management of
energy-intensive resources (e.g., GPS) burdens the developer with

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

CC’16, March 17-18, 2016, Barcelona, Spain
© 2016 ACM. 978-1-4503-4241-4/16/03...
http://dx.doi.org/10.1145/2892208.2892218

185

“power-encumbered programming” [36] and creates various oppor-
tunities for software defects. Static detection of such defects is of
significant value. Common battery-drain defects—“no-sleep” [36]
and “missing deactivation” [4, 27]—are due to executions along
which an energy-draining resource is activated but not properly de-
activated. Such dynamic behaviors can be naturally stated as prop-
erties of control-flow paths, and thus present desirable targets for
static control-flow and data-flow analyses.

State of the art Despite the clear importance of energy-drain de-
fects, there is limited understanding of how to detect such defects
with the help of program analysis. Early work on this topic [36]
defines a data-flow analysis to identify relevant API calls that turn
on some energy-draining resource, and to search for no-sleep code
paths along which corresponding turn-off/release calls are missing.
For this approach the control-flow analysis of possible execution
paths is of critical importance. However, due to the GUI-based and
event-driven nature of Android applications and the complex in-
teractions between application code and framework code through
sequences of callbacks, static control-flow modeling is a very chal-
lenging problem. This prior work employs an ad hoc control-flow
analysis that exhibits significant lack of generality and precision,
and involves manual effort by the user. An alternative is to use
dynamic analyses to detect certain categories of energy-drain de-
fects [4, 27]. Such defects also correspond to execution paths in
which a sensor (e.g., the GPS) is not put to sleep appropriately, of-
ten because of mismanagement of complex callbacks from the An-
droid framework to the application code. However, such run-time
detection critically depends on the ability to trigger the problematic
behavior. This requires comprehensive GUI run-time exploration,
which is a very challenging problem for an automated analysis [8].
It is highly desirable to develop static analyses that employ general
control-flow modeling of all possible run-time behaviors, together
with detection of the energy-drain patterns along such behaviors.

Our proposal We aim to develop a general static analysis ap-
proach for detecting certain common categories of energy-drain
defects. Specifically, we aim to detect “missing deactivation” be-
haviors in the user interface thread of the application. This is the
main thread of the application and the majority of application logic
is executed in it. While such problematic behaviors may also oc-
cur in threads running concurrently with the UI thread, the current
state of the art for control-flow analysis of multithreaded Android
control flow is still very underdeveloped and there is no concep-
tual clarity on how Android-specific asynchronous constructs (e.g.,
asynchronous tasks and long-running services) should be modeled
statically. Thus, in our current work we focus only on the behav-
ior of the UI thread and the callbacks executed in that thread. Due
to recent advances in static control-flow analysis of Android Ul
behavior [48], the development of static detectors for such energy-
drain defects is feasible for the first time. Future work on more

general static control-flow analysis for multithreaded Android ex-
ecutions will also enable generalizations of our current techniques
to additional categories of energy-drain defects.

The proposed approach is based on three key contributions.
First, we define precisely two patterns of run-time energy-drain be-
haviors (Section 2). The definition is based on formal definitions
of relevant aspects of Android GUI run-time control flow, includ-
ing modeling of GUI events, event handlers, transitions between
windows, and the associated sequences of callbacks. This model-
ing allows us to define the notion of a leaking control-flow path
and two defect patterns based on it. These patterns are related to
the (mis)use of Android location awareness capabilities (e.g., GPS
location information). Location awareness is a major contributor to
energy drain [16] and in prior work on dynamic defect detection
[27] has been identified as the predominant cause of energy-related
defects in UI behavior. Our definition of defect patterns is moti-
vated by case studies from this prior work and by our own analysis
of these case studies. However, our careful formulation of these pat-
terns is new and provides a valuable contribution to the state of the
art. Furthermore, our control-flow modeling is significantly more
general than any prior technique.

The second contribution of our approach is a static defect de-
tection algorithm (Section 3). As a starting point, we use the win-
dow transition graph (WTG), a static GUI control-flow model we
proposed in prior work [48]. Based on this model, the analysis
considers valid interprocedural control-flow paths in each callback
method and its transitive callees, in order to detect operations that
add or remove location listeners. Sequences of window transitions
and their callbacks are then analyzed for possible listener leaking
behaviors based on the two patterns mentioned earlier.

The final contribution of our work is a study of the effectiveness
of the proposed static detection (Section 4). We aim to determine
how well the analysis discovers GUI-related energy-drain defects
reported in prior work, as well as new defects not discovered
by prior approaches. Our evaluation on 15 Android applications
indicates that the static detection is very effective and is superior
to dynamic detection. Furthermore, all but one of the reported
problems are real defects. The evaluation also shows that the cost of
the analysis is low. This high precision and low cost suggest that the
proposed approach is suitable for practical use in static checking
tools for Android.

2. Energy Defect Patterns in Android Software
2.1 Relevant Features of Android GUIs

This section describes the features of Android run-time semantics
that are relevant to the defects considered in this work. Figure 1
summarizes our notation for these features. We focus on the event-
driven control flow in the GUI of the application (i.e., in the main
application thread), since our work targets defects that occur along
this control flow. Figure 2 and Figure 3 contain two code examples
to illustrate these features.

Windows and views Activities are core components of Android
applications, defined by subclasses of android.app.Activity.
An activity displays a window containing several GUI widgets.
A widget (a “view” in Android terminology) is an object from a
subclass of android.view.View.

> Example: Figure 2 shows an example derived from an energy-
drain defect we found in the DroidAR application analyzed in prior
work on the GreenDroid dynamic defect detection tool [27]. This
particular defect is new, and was not reported in that prior work.
The defect is due to the lack of a listener-remove operation at
the end of the lifetime of activity DemoLauncher. When button
btnRun is clicked, the onClick handler registers a location listener
(at line 16) but this listener is not removed even after the activity

186

w € Win window
v € View view
e = [v,k] € Event widget event on v
e = [w,k] € Event default event on w
ceCb callback method
[c,0] € Cb x (WinU View) callback invocation
s € Cbs callback inv. sequence
t = [w,w'] € Trans window transition
e(t) € Event event that triggered ¢
o(t) € Cbs callback sequence for ¢
0(t) € ({push,pop} x Win)* window stack changes
T € Trans™ transition sequence
l € Lst listener
op = [a,ry] € Op add/remove listener APIs
A C Op, x Lst added listeners
R C Op, x Lst removed listeners

Figure 1: Notation for run-time semantics.

is destroyed. As a result, location data (e.g., GPS reads) is sensed
even after it is not needed anymore, which will drain the battery.

Class DemoLauncher is an example of an activity. In this case
this is the start activity of the application: it is started by the
Android launcher when the user launches the application. The
onResume lifecycle callback (discussed shortly) retrieves a button
widget btnRun at line 3. This widget is then associated with an
event handler callback onClick, defined in an anonymous class
that implements interface OnClickListener (lines 4-5). Parame-
ter v in this callback refers to the button widget. <

We also consider the two other common categories of Android
windows: menus and dialogs. Instances of menu classes represent
short-lived windows associated with activities (“options” menus)
and widgets (“context” menus). An example presented later in the
paper illustrates the use of menus. A dialog is an object from
some subclass of android.app.Dialog. Both menus and dialogs
require users to take an action before they can proceed [15]. A
menu/dialog implements a simple interaction with the user, and its
lifetime is shorter than activity lifetime. The last activity that was
displayed before a menu/dialog was displayed is the owner activity
of this menu/dialog. The lifetime of a menu or a dialog is contained
within the lifetime of its owner activity.

We will use Win to denote the set of all run-time windows
(activities, menus, and dialogs) and View for the set of all run-
time widgets in these windows (Figure 1).

Events Each w € Win can respond to several events. Widget
events are of the form e = [v,k] where v € View is a widget
and k is an event kind. For the example in Figure 2 we have event
[br,click] where br is the Button instance referenced by btnRun.

We also consider five kinds of default events. Event back corre-
sponds to pressing the hardware BACK button, which closes the
current window w and typically (but not always) returns to the
window that opened w.' Event rotate shows that the user rotates
the screen, which triggers various GUI changes. Event home ab-
stracts a scenario there the user switches to another application and
then resumes the current application (e.g., by pressing the hard-
ware HOME button to switch to the Android application launcher,
and then eventually returning back to the application). Event power
represents a scenario where the device screen is turned off by press-
ing the hardware POWER button, followed by device reactivation.
Event menu shows the pressing of the hardware MENU button to

!'In some scenarios (e. g., callback onBackPressed is defined) the window
is not closed. We have not observed such scenarios in the analyzed apps.

1 class DemoLauncher extends Activity {

2 void onResume() {

3 Button btnRun = ...;

4 btnRun.setOnClickListener (new OnClickListener() {
5 void onClick(View v) { runQ; } }); }

6 // === Other possible lifecycle callbacks: onCreate,
7 // === onDestroy, onStart, onRestart, onPause

8 void run() {

9 EventManager.getInstance() .registerListeners(); } }
10

11 class EventManager implements LocationListener {

12 static EventManager instance = new EventManager();
13 static getInstance() { return instance; }

14 void registerListeners() {

15 LocationManager 1m = ...;

16 1m.requestLocationUpdates(this); } }

Figure 2: Example derived from the DroidAR application.

display an options menu. A default event will be represented as
e = [w,t] € Win x {back, rotate, home, power, menu} where
w is the currently-active window. We will use Event to denote the
set of all widget events and default events. In Figure 2 we have five
default events [DemoLauncher,. . .], but since the activity does not
define an options menu, event menu does not have any effect.

Callbacks Each e € Event triggers a sequence of callback
invocations that can be abstracted as [c1,01][c2,02] ... [Cm,0m].
Here ¢; is a callback method defined by the application, and o;
is a run-time object on which ¢; was triggered. Note that each
of these invocations completes before the next one starts—that is,
their lifetimes are not nested within each other, but rather they are
disjoint. The actual invocations are performed by event-processing
logic implemented inside the Android framework code.

We consider two categories of callbacks. Widget event handler
callbacks respond to widget events; an example is onClick in Fig-
ure 2. Lifecycle callbacks are used for lifetime management of
windows. For example, creation callback onCreate indicates the
start of the activity’s lifetime, and termination callback onDestroy
indicates end of lifetime. Menus and dialogs can also have cre-
ate/terminate callbacks.

> Example: In Figure 2 event [br,click] (br is the Button
object referenced by btnRun) will cause a widget event handler
callback invocation [onClick,br|. In this example the callback
sequence contains only this invocation. However, for the sake
of the example, suppose that onClick invoked an Android API
call to start some new activity a. Also, for illustration, suppose
that the source activity DemoLauncher and the target activity a
both define the full range of activity lifecycle callbacks (listed for
completeness at lines 6—7 in Figure 2). Then the callback invoca-
tion sequence would be [onClick,br|[onPause,DemoLauncher]
[onCreate,a|[onStart,a][onResume,a][onStop,DemoLauncher];
this sequence can be observed via android. os.Debug tracing.

If after [br,click] the next event was [a,back]—that is, the
BACK button was pressed to close a and return to DemoLauncher—
the sequence would be [onPause,a] [onRestart,DemoLauncher]
[onStart,DemoLauncher|[onResume,DemoLauncher][onStop,a]
[onDestroy,a]. As seen from these examples, there can be a non-
trivial sequence of callback invocations in response to a single GUI
event. <

Window transitions We use the term run-time window transition
to denote a pair t = [w,w’] € Win x Win showing that when
window w was active and interacting with the user, a GUI event
occurred that caused the new active window to be w’ (w’ may
be the same as w). Each transition ¢ is associated with the event
€(t) € Event that caused the transition and with o (t), a sequence
of callback invocations [¢;,0;].

187

There are two categories of callback invocation sequences for
Android GUI transitions. The first case is when event €(t) is a
widget event [v,k] where v is a widget in the currently-active
window w. In this case o(t) starts with [c1,v] where ¢1 is the
callback responsible for handling events of type k£ on v. The rest
of the sequence contains [c;,w;] with ¢; being a lifecycle callback
on some window w;. In general, the windows w; whose lifecycles
are affected include the source window w, the target window w’, as
well as other related windows (e.g., the owner activity of w). In the
running example, a self-transition ¢ for DemoLauncher is triggered
by event [br,click], resulting in o(t) = [onClick,br]. Following
the hypothetical example from above, if onClick opens another
activity a, the transition would be from DemoLauncher to a, with
o(t) as listed above: [onClick,br]. .. [onStop,DemoLauncher].

The second category of callback sequences is when €(¢) is a de-
fault event [w,k] on the current window w. In this case all elements
of o(t) involve lifecycle callbacks. For example, event home on
DemoLauncher triggers a self-transition ¢ with o(¢) containing in-
vocations of onPause, onStop, onRestart, onStart, onResume
on that activity. Additional details of the structure of these callback
sequences are presented in our earlier work [46, 48].

Window stack Each transition ¢ may open new windows and/or
close existing ones. This behavior can be modeled with a win-
dow stack: the stack of currently-active windows.? Each transition
t can modify the stack by performing window push/pop sequences.
These effects will be denoted by §(¢t) € ({push, pop} x Win)*.
In the examples presented in this paper, the effects of a transition ¢
are relatively simple: for example, opening a new window w repre-
sented by push w, or closing the current window w represented by
pop w. In the simplest case, as in the self-transition ¢ from Figure 2,
4(t) is empty. However, our prior work [48] shows that in general
these effects are more complex: §(¢) could be a (possibly empty)
sequence of window pop operations, followed by an optional push
operation. These operations could involve several windows and can
trigger complicated callback sequences.

Transition sequences Consider any sequence of transitions 7' =
(t1,t2,. .., tn) such that the target of ¢; is the same as the source of
ti+1. Let o(T) be the concatenation of callback sequences o (t;);
similarly, let §(7") be the concatenation of window stack update
sequences 0(t;). Sequence T is valid if 6(T') is a string in a
standard context-free language [39] defined by

Valid — Balanced Valid | push w; Valid | e

where Balanced describes balanced sequences of matching push
and pop operations

Balanced — Balanced Balanced | push w; Balanced pop w; | €

2.2 Adding and Removing of Listeners

The callbacks invoked during window transitions can perform a va-
riety of actions. Our work considers actions that may affect energy
consumption. In particular, we focus on add-listener and remove-
listener operations related to location awareness. Such actions have
been considered by GreenDroid [27], an existing dynamic analysis
tool for detection of energy defects in Android applications. Since
almost all GUI-related energy-drain defects reported in this prior
work are due to location awareness, focusing on such defects al-
lows us to perform direct comparison with the results from this
existing study.

Relevant Android APIs The standard mechanism for obtaining
information about the location of the user (e.g., using GPS data)

2 Features such as launch modes for activities [13] can lead non-LIFO
behaviors, but they do not appear to be commonly used [44].

is by registering a location listener with the framework’s location
manager. The listener implements callback methods that are in-
voked when relevant changes happen. Registration is done through
API calls such as requestLocationUpdates, with the location
listener provided as a parameter. The listener can be removed by
calling removeUpdates and using the listener as a parameter. A
number of other Android APIs have similar effects. For exam-
ple, when an application is displaying a map, it could display
an overlay of the current user location on the map by calling
enableMyLocation on an overlay object, in which case this ob-
ject becomes a listener for location updates. A subsequent call to
disableMyLocation stops this listening.

> Example: In Figure 2 callback [onClick,br] invokes run,
which in turn invokes registerListeners on an instance of
EventManager. This instance (created at line 12) is a listener
object that is registered for location updates at line 16. However,
this listener is never removed by any other code in the activity. In
particular, if the user exits DemoLauncher—e.g., by pressing the
hardware BACK button to exit the application—the listener will
remain registered and will drain the battery. We have confirmed
this incorrect behavior through testing. <

The standard guidelines for building location-aware applica-
tions warn the developers to “always beware that listening for
a long time consumes a lot of battery power” [16]. Our goal is
to model the addition and removal of location listeners along se-
quences of window transitions (and their related callbacks), in order
to identify problematic behaviors that may lead to extended periods
of location listening. We formalize the relevant run-time features as
follows (also see Figure 1). Let Lsst be the set of all run-time ob-
jects [that are location listeners. Let Op be the set of pairs [a,r]
where a is an API method for adding a listener and r is the corre-
sponding API method for removing that listener. We will use Op,,
to denote {a | [a,r] € Op}; Op,. is defined similarly. For example,
[requestLocationUpdates,removeUpdates| € Op.

Leaking sequences Consider s = [c1,01][c2,02] . .. [¢m,0m], @
callback sequence observed during some window transitions. Re-
call that ¢; is a callback method and o; is a view/window on which
¢; is called. Let A; be the set of pairs [a,l] € Op, x Lst such that
add-listener method a was invoked on listener ! during the execu-
tion of ¢; on o;, and the rest of the execution of ¢; did not invoke
r on [for any [a,r] € Op. In other words, ¢; (or its transitive
callees) invoked a and provided [as a parameter, and subsequently
did not invoke on [any remove-listener method r that matches a.
One can draw an analogy with the standard compiler notion [1] of a
downward-exposed definition in a basic block (i.e., a definition that
reaches the exit of the block). Similarly, we will use downward-
exposed to denote any [a,l] that was not killed by a subsequent [r,l]
in ¢; and its transitive callees, and thus reached the exit of c;.

In the running example, for the callback sequence containing
only [onClick,br], the corresponding set A; contains one element:
[requestLocationUpdates,l| where [is created at line 12.

Similarly, for callback invocation [c;,04], let R; contain [r,l] €
Op,. x Lst such that remove-listener method r was invoked on
! during the callback execution. Note that the definition of R;
could have included the following additional condition: “in the
execution of ¢; (and its transitive callees) [r,l] was not preceded by
a matching [a,l]”. Such a condition would have made the definition
of R; similar to the definition of A;. However, such a condition
is not necessary because in Android it is possible for a single [r,l]
to be preceded by several matching [a,l], occurring over multiple
callbacks, including the callback ¢; that invokes [r,l]. That single
remove operation “cancels” all preceding add operations. Thus, it
is irrelevant whether ¢; contains a preceding [a,l].

188

DEFINITION 1. Given a callback invocation sequence s of length
m, let A1, Az, ..., An be its sequence of add-listener sets and
Ri, Ra, ..., Ry be its sequence of remove-listener sets. Sequence
s leaks listener | if there exists an add-listener operation [a,l] € A;
such that for each j > i there does not exist a matching [r,l] € R;.

Leaking callback sequences are typically harmless: they repre-
sent legitimate needs to receive updated information about the lo-
cation of the device. For example, in Figure 2, the click event on
the button causes a window self-transition with a leaking callback
sequence (containing only [onClick,br]), but of course this is the
intended behavior. However, not all leaking sequences are desired.
We define two patterns of leaking sequences that represent poten-
tial defects. These patterns are motivated by case studies from the
work on GreenDroid, and by our own analysis of these case studies.

2.3 Pattern 1: Lifetime Containment

The informal definition of this pattern is as follows: if an activity
adds a listener, the listener should be removed before that activity
is destroyed. A similar pattern has been defined informally as part
of the GreenDroid tool, but our goal here is to state it precisely
in order to allow the development of static detection algorithms.
Note that since menus and dialogs are intended to be short-lived,
their lifetimes cannot be expected to contain the lifetime of listener
registration; thus, the pattern is defined only for activities.

Consider a window transition sequence T = (t1,t2,...,tn)
and recall that §(7) is the concatenation of window stack push/pop
operations 6(;). Sequence T represents a lifetime of an activity w
if §(¢1) contains an operation push w, 0(t,) contains an operation
pop w, and the sequence of push/pop operations between these
two operations in §(7") is balanced (as defined by non-terminal
Balanced described earlier).

DEFINITION 2. Suppose T represents a lifetime of an activity w.
Consider the callback invocation sequence o(T) and its subse-
quence s = [c1,w]...[cm,w] where c1 is the creation callback
for w and cp, is the termination callback for w. If s is leaking a
listener 1, and the corresponding add-listener operation [a,l] oc-
curred when the top-most activity on the window stack was w, then
T matches Pattern 1.

Note that this definition does not say “the top element on the
window stack was w”. Here we allow for some menus/dialogs
(owned by w) to be on top of w in the window stack at the time
when the listener is added. Since menus and dialogs often execute
small actions on behalf of their owner activity, we still attribute
the add-listener operation to the activity, and consider whether the
activity’s lifetime contains the lifetime of listener registration.

> Example: Consider DemoLauncher in the running exam-
ple. For brevity, let us denote it with a. Since this is the start-
ing activity of the application, we introduce an artificial tran-
sition 1 [launcher,a] where launcher denotes the An-
droid application launcher. The relevant callbacks are o (t1)
[onCreate,a|[onStart,a][onResume,a]. Next, let t2 = [a,a] be
the transition triggered by button br, with o(t2) = [onClick,br].
Finally, let t3 = [a,launcher] occur then the hardware BACK but-
ton is pressed to close a and go back to the Android launcher. The
callbacks are o(t3) = [onPause,a|[onStop,a][onDestroy,al. Let

window transition sequence T = (t1,t2,t3). This sequence is
balanced, since the window stack effects are §(¢t1) = push a,
d(tz2) =[], and 6(t3) = pop a. Clearly, T represents a lifetime of

a. In the application code, the activity defines only onCreate (not
shown in the figure because it does not have relevant effects) and
onResume, but not any other lifecycle callbacks. Thus, the relevant
callback sequence is [onCreate,a|[onResume,a][onClick,br].
Since the last callback contains [requestLocationUpdates,l]

class ListCheckin extends Activity {
void onOptionsItemSelected(Menultem item) {
switch(item.getItemId()) { ...
case ADD_INCIDENT:
Intent i = new Intent(CheckinActivity.class);
startActivity(i); return; ... } }

W ~NOUDWN -

class CheckinActivity extends Activity
9 implements LocationListener {

10 LocationManager 1lm = ...;

11 void onCreate() {

12 1m.requestLocationUpdates(this); }
13 void omDestroy() {

14 1m.removeUpdates(this); }

15 void onStart() { ... }

16 void onResume() { ... }

17 void onPause() { ... }

18 void onLocationChanged() {

19 1m.removeUpdates(this); } }

Figure 3: Example derived from the Ushahidi application.

and there is no subsequent [removeUpdates,l], window transition
sequence 1" matches Pattern 1. <

2.4 Pattern 2: Long-Wait State

Informally, this pattern considers an activity that adds a listener and
then is put in a (potentially) long-wait state without removing this
listener. We are interested in application states that can suspend the
application for arbitrarily long periods of time. Specifically, sup-
pose the the application user presses the hardware HOME button
(or, equivalently, selects another application from the list of recent
applications). As a result, the current application is put in the back-
ground. However, if there are any active location listeners, the bat-
tery’s energy is still consumed. It may be hours before the user re-
sumes the application. A similar scenario occurs when the hardware
POWER button is pressed: the screen is turned off, but active loca-
tion listeners still drain the battery. Since the callback sequences for
these two scenarios are the same, we will discuss only the use of
the HOME button to put the application in a long-wait state. This
pattern has not been identified in the work on GreenDroid.

Unlike with Pattern 1, here the lifetime of the activity may con-
tain the lifetime of listener registration. This scenario is illustrated
by the example in Figure 3. The simplified code in the figure is
derived from the Ushahidi application, which was also analyzed in
the prior work on GreenDroid. This particular defect is not detected
in the experiments from that prior work. Through testing, we have
confirmed that indeed this defect drains the battery.

> Example: Activity ListCheckin contains an options menu.
Event handler onOptionsItemSelected represents the clicking
of an item in that menu. One of the menu items is used to open
CheckinActivity, using the standard Android mechanism of in-
tents. Inside the newly-opened activity, onCreate registers the ac-
tivity as a listener, and onDestroy stops the listening. As far as
Pattern 1 is concerned, the lifetime of listener registration is con-
tained within the lifetime of the activity that adds the listener. The
rest of the lifecycle callbacks defined in the code (lines 15-17) do
not have any effect on the listener.

Callback onLocationChanged is invoked when a location
read is obtained; this method stops the listening. However, it is
still possible for the listener to be leaked. If a location read can-
not be acquired (e.g., the GPS cannot obtain a satellite fix be-
cause of physical obstacles or atmospheric conditions), callback
onLocationChanged will not be invoked. If at this moment the
user presses the HOME or POWER button (e.g., the user gives up
after the GPS signal cannot be acquired), the application is put on
the background but the listening is still active and is draining the

189

battery. Note that battery drain for such “no-read” listener leaks
occurs at the same rate as drain for “normal” listener leaks when
location reads are successfully acquired. <

To define the general form of this defect pattern, consider a
window transition sequence T = (t1,t2,...,tn) Where &(t1)
contains push w for an activity w and event €(t,,) is [w’,home]
where w' is either the same as w, or is a menu/dialog owned by w.
Here w is created at the beginning of 7" and default event home
occurs on w’ at the end of T'. Suppose also that the sequence of
push/pop operations in 6(7"), starting from push w on t1, is valid
as defined by non-terminal Valid described earlier. Under these
conditions, 7" puts w in a long-wait state.

DEFINITION 3. Suppose T' puts an activity w in a long-wait state.
Consider the callback invocation sequence o(T) and its subse-
quence s = [c1,w)] . ..[cm,w'] where c1 is the creation callback
for w and ¢y, is the last callback before the application goes in the
background. If s is leaking a listener l, and the corresponding add-
listener operation [a,l] occurred when the top-most activity on the
window stack was w, then T matches Pattern 2.

Note that the last callback ¢,,, in this definition is an intermedi-
ate point in the invocation sequence for the last transition ¢,. If an
activity defines all lifecycle callbacks, the entire sequence for ¢, is
onPause, onStop, onRestart, onStart, onResume. Callback ¢,
is onStop, since the first two callbacks occur before the application
goes in the background, and the last three are executed during re-
activation when the user returns to the application.

> Example: For the example in Figure 3, let us use (for brevity)
a to denote ListCheckin, m to denote the options menu of a, and
a’ to denote CheckinActivity. Consider the transition sequence
T = (t1,t2) defined as follows. Transition ¢; is triggered when
the ADD_INCIDENT menu item is clicked. The window stack effect
sequence (t1) is pop m, push a’. Here we account for the stan-
dard behavior of menus: after a menu item is clicked, the menu is
automatically closed—thus, pop m should be included in the se-
quence. Transition ¢, is triggered by event [a’,home] and has an
empty d(t2). Clearly, T' represents a valid sequence of transitions.

In general, sequence o (t1) is [onOptionsItemSelected,ai]
[onOptionsMenuClosed,m|[onPause,a][onCreate,a’][onStart,
a'][onResume,a’][onStop,al; here ai denotes the menu item with
id ADD_INCIDENT. Sequence o (t2) contains [onPause,a’][onStop,
a'][onRestart,a’][onStart,a’][onResume,a’]. The last three call-
backs in o (t2) occur after the application is re-activated from the
background. Accounting for the subset of callbacks defined in the
code, and the definition of Pattern 2, the relevant callbacks are
[onCreate,a’][onStart,a’][onResume,a’][onPause,a’]. The first
element in the sequence adds the activity as a listener, but the rest
of the callbacks do not remove this listener. Thus, T = (¢1, t2)
matches Pattern 2. A fix for the defect would be to remove the
listener in CheckinActivity.onPause.

3. Static Detection of Defect Patterns

The run-time behaviors defined earlier can be used as basis for
defining static abstractions and static detection analyses based on
them. In a minor abuse of notation, for the rest of the paper we will
use Win, View, etc. (Figure 1) to denote sets of static abstrac-
tions rather than run-time entities. There are various ways to define
such static abstractions. We use the approach from [40, 44], which
creates a separate a € Win for each activity class, together with
appropriate m,d € Win for its menus and dialogs, and abstrac-
tions v € View for their widgets (i.e., defined programmatically
or in layout XML files), and then propagates them similarly to inter-
procedural points-to analysis, but with special handling of Android
API calls.

al:ListCheckin

el:menu

m:OptionsMenu(al)

launcher

e2:ADD_INCIDENT,
click

D e3:home

el:launch }e3:back

e2:br,

a:DemoLauncher .
click

a2:CheckinActivity

>

(2) (W)

Figure 4: WTGs for the running examples.

Follow-up work [46-48] defines the window transition graph
(WTG), a static model G = (Win, Trans, ¢, §, o) with nodes
w € Win and edges ¢ = [w,w'] € Trans. Each transition ¢
is annotated with trigger event e(t), callback sequence o(t), and
window stack changes d(¢). Implementations of these analyses are
available in our GATOR [41] analysis toolkit for Android, which
itself is built using the Soot framework [43] and its Jimple inter-
nal representation (constructed either from Java bytecode or from
Dalvik bytecode via Dexpler [5]). The energy defect analysis was
developed in this infrastructure.

The WTGs for the running examples are shown in Figure 4.
These graphs are small because the examples are simplified on
purpose, but in actual applications WTGs have hundreds of edges.
Given the WTG, our detection analysis proceeds in three phases.

3.1 Phase 1: Add-Listener and Remove-Listener Operations

Consider the set {[c,0] |t € G A[c,0] € o(t)}. For each invocation
of a callback ¢ on object o, we compute a set A(c, o) of pairs [a,l]
of an add-listener API invocation statement a and a listener object
l. We also compute a similar set R(c, o) of pairs [r,[]. These sets
are determined in four steps, as described below.

Step 1 An interprocedural control-flow graph (ICFG) [42] is con-
structed for c and its transitive callees in the application code. Then,
a constant propagation analysis is performed to identify and re-
move infeasible ICFG edges, based on the knowledge that the call-
ing context of c is o. This analysis is defined in prior work [47],
where it was shown to produce more precise control-flow mod-
els. For the example in Figure 3, this analysis will determine that
when onOptionsItemSelected is invoked on the item with id
ADD_INCIDENT, only one branch of the switch statement is feasi-
ble and the rest of the branches can be ignored. In addition, we
remove ICFG edges related to null pointer checks and throwing of
unchecked exceptions, since in our experience they represent un-
usual control flow that does not contribute to defect detection.

Step 2 An ICFG traversal is performed starting from the entry
node of c. This traversal follows interprocedurally-valid paths. Dur-
ing the traversal, whenever an add-listener API call site a is encoun-
tered, the points-to set of the listener parameter is used to construct
and remember pairs [a,l]. (Points-to sets are derived as described
elsewhere [40].) Similarly, we also record all reached pairs [r,l]
where r is a remove-listener API invocation statement. For the ex-
ample in Figure 2, analysis of onClick and its callees will iden-
tify [requestLocationUpdates,EventManager]| where the sec-
ond element of the pair denotes the listener created at line 12. For

190

the example in Figure 3, analysis of onCreate will identify a sim-
ilar pair with the activity being the listener. In addition, analysis of
onDestroy will detect [removeUpdates,CheckinActivity].

Step 3 For each [a,l] encountered in Step 2, we need to determine
whether the ICFG contains a path from statement a to the exit
of ¢ along which there does not exist a matching remove-listener
operation [r,l]. If the ICFG contains at least one [r,!] for the same
listener ! (as determined by Step 2), we perform an additional
traversal on the reverse ICFG, starting from the exit node of c.
This traversal considers only valid paths with proper matching of
call sites and return sites. During the traversal, whenever a remove-
listener API call site r with listener [is encountered and it matches
the pair [a,l] being considered, the traversal stops. If the add-
listener call site a is never reached, this means that [a,l] is not
downward exposed and is not included in set A(c, 0). In both of
our examples, the add-listener operation is downward exposed and
this step does not modify sets A(c, o).

Step 4 'We construct a similar set R(c, 0) of remove-listener op-
erations. However, only operations that are guaranteed to execute
along all possible execution paths should be included in this set. If
[r,l] could be avoided along some path, this could lead to a leak
of listener . Thus, for each [r,l] observed in Step 2, we perform
a traversal of valid ICFG paths, starting from the entry node of c,
and stopping if [r,!] is encountered. If the exit node of c is reached,
this means that some valid ICFG path can avoid [r,l]. Set R(c, o)
excludes such remove-listener operations. In the running example,
the analysis of onDestroy will determine that each path through
the callback must reach the remove-listener call site, and therefore
this operation is included in R(c, 0).

> Example: The final sets A and R computed by Phase 1 for the
two running examples are as follows:

A(onResume, DemoLauncher) = {)

R(onResume, DemoLauncher) = ()

A(onClick,br) =

{ [requestLocationUpdates,EventManager] }
(onClick,br) =0
(onOptionsItemSelected,ai) =0
(onOptionsItemSelected,ai) = ()
(onCreate, CheckinActivity) =

{ [requestLocationUpdates,CheckinActivity] }
(onCreate, CheckinActivity) =
(onDestroy, CheckinActivity) = ()
(onDestroy, CheckinActivity) =

{ [removeUpdates,CheckinActivity] }

A(onStart/onResume/onPause, CheckinActivity) = ()

R(onStart/onResume/onPause, CheckinActivity) = ()
Here br and ai represent the static abstractions of the correspond-
ing run-time widgets. <

R
A
R
A
R
A
R

3.2 Phase 2: Path Generation

The second phase of the analysis creates a set of candidate paths
that represents the lifetime of an activity (for Pattern 1) or the
transition to a long-wait state (for Pattern 2). For each activity
w € Win, we consider all incoming WTG edges t; = [w',w)]
that have push w as the last element in §(¢1). Starting from each
such ¢1, we perform a depth-first traversal to construct “candidate”
paths (t1,t2,...,t,). The details of this traversal are presented in
Algorithm 1. During the traversal, path stores the current path and
stack is the window stack corresponding to that path. We only con-
sider paths whose length does not exceed some analysis parameter
k (in our implementation, this parameter’s value is 5). Any path
that represents a lifetime for the initial activity w or a transition to
a long-wait state from w is recorded for later processing.

Algorithm 1: GenerateCandidatePaths

foreach activity w € Win do
foreach edge t1 = [w’,w] such that §(t1) ends with push w do

1
2
3 path «— (t1)
4
5

stack — (w)
TRAVERSE(w, path, stack)

6 procedure TRAVERSE (w, path, stack)
7 if path.length > k then
8 | return

9 if ACTIVITYLIFETIME(path, stack) then
record path
11 return
if LONGWAIT(path, stack) then
record path
| return

12
13
14

15 foreach edge t = [w,w'] such that t ¢ path do
16 if CANAPPEND (¢, path, stack) then

17 DOAPPEND(t, path, stack)

18

19

TRAVERSE(w’, path, stack)
UNDOAPPEND (¢, path, stack)

Helper function ACTIVITYLIFETIME checks the following con-
ditions: (1) §(t,,) of the last edge ¢, in path contains pop w, and (2)
the stack operations in d(¢,,), up to and including this pop w, when
applied to stack, result in an empty stack. The second condition
guarantees that the sequence of push/pop operations from push w
in 6(t1) to pop w in §(ty,) is a string in the language defined by
Balanced.

Helper function LONGWAIT determines if path will transit to a
long-wait state from the initial activity w. The following conditions
are checked: (1) stack is not empty and its top window w' is either
w or a dialog/menu owned by w, and (2) the event on the last
edge in path is [w’,home]. Since the window stack is not empty,
the sequence of push/pop operations along path is a string in the
language defined by Valid.

During the depth-first traversal, helper function CANAPPEND
(invoked at line 16) considers the sequence 0 (t) of stack operations
for a given edge t = [w,w’] and decides whether this sequence can
be successfully applied to the current window stack. In particular,
for each pop w” operation in §(t), the current top of the stack
must match w”’. Furthermore, after all operations are applied, the
top of the stack must be the same as the target node of ¢. If
CANAPPEND returns true, it means that the sequence of stack
push/pop operations in the concatenation of §(path) and 6(t) is
a string in the language defined by Valid.

If transition ¢ is a valid extension of the current path, helper
function DOAPPEND appends ¢ to path and applies stack opera-
tions §(¢) to stack. After the traversal of the new path completes,
helper function UNDOAPPEND removes ¢ from the path and “un-
rolls” the changes made to stack due to operations 6(t).

> Example: Consider the example in Figure 2 and its WTG

shown in Figure 4a. Let a denote the WTG node for DemoLauncher.

Figure 4a shows transitions t1 = [launcher,al], t2 = [a,a], and
ts = [a,launcher] with events €(t1) = launch, €(t2) = [br,click]
and e(t3) = [a,back]. In addition, consider transition t4 = [a,a]
with €(t4) = [a,home] (not shown in the figure). The stack op-
erations for these four edges are §(t1) = push a, §(t2) = [],
d(ts) = pop a,and §(ts4) =[]

For the sake of the example, suppose we execute Algorithm 1
with k = 3. The candidate paths for Pattern 1 are (t1,t3),
(t1,t2,t3), and (t1,t4,t3). The second path corresponds to the

191

problematic leaking behavior, as discussed earlier. The candidate
paths for Pattern 2 are (t1,t4) and (t1, t2, t4). For the second path,
the callback sequence before the application goes in the back-
ground is [onResume,a][onClick,br| (because no other lifecycle
callbacks are defined in the application), and therefore this is also
a leaking path. The next phase of the analysis considers all these
candidate paths and identifies the ones with leaking callback se-
quences. <

3.3 Phase 3: Detection of Leaking Callback Sequences

In this phase, we perform leak detection on candidate paths
recorded in Phase 2. First, the relevant callback sequence is ex-
tracted from each candidate path. Consider a transition sequence
T = (t1,...,tn) which represents a Pattern 1 candidate path. The
relevant callback subsequence of §(T') is [c1,w] . .. [cm,w] where
c1 is the creation callback for w and ¢, is the termination callback
for w (w is the target window of edge ¢1). Similarly, for a sequence
T = (t1,...,tn) which is a Pattern 2 candidate path, the relevant
subsequence is [c1,w] . . . [cm,w'] Where ¢; is the creation callback
for w and ¢, is the last callback before the application goes in the
background.

Given a sequence of callbacks s = [c1,01][c2,02] . .. [cm,0m],
we consider its sequence Aj, Aa, ..., Ay, of add-listener sets and
Ri, Ra, ..., Ry of remove-listener sets. Recall from Definition 1
that s leaks listener [if there exists an add-listener operation [a,l] €
A, such that for each j > 4 there does not exist a matching
[r] € R;.In Phase 1, we have already computed sets A(c, o)
and R(c, o) for any relevant ¢ and o. To detect leaks, we examine
each element [c;,0;] of s in order and maintain a set L of added
but not yet released listeners. Initially, L is empty. When [c¢;,04] is
processed, all elements of R(c;, 0;) are removed from L, and then
all elements of A(c;, 0;) are added to L. Any [a,!] that remains in
L at the end of this process is considered to be a leak.

> Example: Consider again Figure 2 and the WTG in Figure 4a.
We have tq [launcher,a], t2 = [a,a] for the button click,
ts = [a,launcher] for back, and t4 = [a,a] for home. Can-
didate paths for Pattern 1 (for k = 3) are (t1,t3), (t1,t2,t3),
and (t1,ta,ts). For the first and the third path, the relevant call-
back sequence is [onResume,a] which is not leaking because
both A(onResume,a) and R(onResume,a) are empty. For the
second path, callback sequence [onResume,a][onClick,br] leaks
[requestLocationUpdates,EventManager]. For candidate path
(t1,t2,t4) for Pattern 2, the callbacks before the application goes
in the background are also [onResume,a][onClick,br] and there is
a leak as well.<

Defect reporting For any leaking candidate path (¢1,...), the
analysis records the pair [w,!] of the initial activity w (i.e., the
target of ¢1) and the leaking listener [/, identified by the alloca-
tion site of the corresponding object. For Figure 2, this would be
[DemoLauncher,l12] where l12 is the EventManager allocation
site at line 12 in the code. For each recorded pair, the leaking candi-
date paths for that pair are also recorded. Each [w,l] is reported as
a separate defect, since it requires the programmer to examine the
callbacks associated with w and to determine whether they manage
listener ! correctly.

Defect prioritization In addition to these reports, we also classify
leaking listeners as “high” or low “low” priority, based on the
following rationale. Consider again the example in Figure 3. The
leaking behavior can be observed only when a location read is
not obtained (e.g., the weather does not allow a GPS fix), which
arguably is not a very frequently-occurring situation. If we analyze
onLocationChanged—the callback that is executed on a listener
l when a location read is obtained—we can determine whether it
contains a remove-listener operation for [along each execution

Application WTG Defects Time

Nodes Edges Paths Pat-1 Real-1 Pat-2 Real-2 (s)
droidar 10 120 82292 2 2 2 2 247
osmdroid 14 92 1425 0 0 2 2 0.07
recycle 7 22 98 1 1 1 1 0.04
sofia 11 55 237 1 1 1 1 0.05
ushahidi 42 296 31416 1 1 3 3 1.21
droidar-f 10 120 82292 1 1 1 1 2.44
osmdroid-f 14 92 1425 0 0 0 0 0.07
recycle-f 8 29 258 0 0 0 0 0.04
sofia-f 15 67 406 0 0 0 0 0.08
ushahidi-f 42 284 30758 0 0 2 2 0.71
heregps 3 14 414 1 1 1 1 0.05
locdemo 5 13 228 1 1 1 1 0.04
speedometer 2 5 10 1 1 1 1 0.03
whereami 5 17 51 1 1 1 1 0.03
wigle 18 64 3769 1 0 1 1 0.41

Table 1: Analyzed applications and detected defects.

path. If this is the case, a location read will release the listener. In
the defect report from the analysis such listeners are labeled as “low
priority”: they should still be examined by the programmer, but
perhaps after other leaking listeners have been examined. To make
this distinction, for each leaking [we analyze the corresponding
callback (onLocationChanged or similar method) using the same
approach as in Step 4 of Phase 1. The defect in Figure 3 will be
reported as low priority, while the one from Figure 2 will be high
priority. In our experiments 3 out of the 17 reported defects were
classified as low priority ones.

4. Evaluation

The static analysis was implemented in GATOR [41], our open-
source static analysis toolkit for Android. The toolkit contains im-
plementations of GUI structure analysis [40, 44] and WTG gener-
ation [46—48]. The implementation of the energy defect analysis is
currently available as part of the latest release of GATOR.

The goal of our evaluation is to answer several questions. First,
how well does the analysis discover GUI-related energy-drain de-
fects already known from prior work? Second, does the analysis
discover defects that have not been identified in prior work? Third,
does the detection exhibit a reasonably small number of false posi-
tives? Finally, what is the cost of the analysis?

Benchmarks To answer these questions, we used several sources
of benchmarks, as listed in Table 1. First, we considered the bench-
marks from the work on GreenDroid [27] that exhibit defects due
to incorrect control flow and listener operations in the UI thread
of the application. Almost all such GUI defects involve operations
related to location awareness, and our static analysis was built to
track add/release operations for location listeners. We also consid-
ered the fixed versions of these benchmarks—that is, the versions
that involve fixes of these known defects. Both defective and fixed
versions were obtained from the public GreenDroid web site.® In
Table 1, applications in the first part of the table are the defective
ones, while applications in the second part of the table, suffixed
with -£, are the ones with defect fixes.

We also considered the F-Droid repository of open-source appli-
cations* and searched for applications that use location-awareness

3sccpu2.cse.ust.hk/greendroid

4f-droid. org

192

capabilities in their Ul-processing code. Specifically, the textual
description and the manifest file were checked for references to
location awareness of GPS, and the code was examined to ensure
that the UI thread uses location-related APIs. For the applications
we could successfully build and run on an actual device, the static
analysis was applied to detect potential defects. Out of the 10 ap-
plications that were analyzed, 5 were reported by the analysis to
contain defects. The last part of Table 1 shows these 5 applications.
Columns “Nodes” and “Edges” show the numbers of WTG
nodes and edges, respectively. Column “Paths” contains the num-
ber of candidate paths that were recorded and then analyzed for
leaking listeners. The last column in the table shows the cost of the
analysis; for this collection of experiments, this cost is very low.

Detected defects Recall that for a leaking path (¢1, . . .), the anal-
ysis reports a pair [w,l] of the initial activity w (i.e., the target of
t1) and the leaking listener [. We consider each [w,l] to be a de-
fect. Column “Pat-1" shows the number of such defects that were
reported by the static analysis as instances of Pattern 1. Column
“Pat-2” shows a similar measurement for Pattern 2. In our experi-
ments, a total of 17 unique pairs [w,!] were reported, and all defects
that match Pattern 1 (11 defects) also match Pattern 2 (17 defects),
but not vice versa. However, it is still useful to detect both patterns
statically, as they correspond to two different scenarios. If a defect
matches both Pattern 1 and Pattern 2 (e.g., the one in Figure 2),
it usually means that the programmer completely ignored the re-
moval of the listener. On the other hand, if a defect matches Pattern
2 but not Pattern 1 (e.g., the one in Figure 3), this means that the
programmer attempted to remove the listener, but did not do it cor-
rectly. Given the low cost of the analysis, we believe that detection
of both patterns is valuable.

Column “Real-1" shows the number of detected defects from
column “Pat-1” that we manually confirmed to be real, by observ-
ing the actual run-time behavior of the application. Similarly, col-
umn “Real-2” shows the number of defects from column “Pat-2”
that were verified in the same manner. Only one reported defect is
incorrect: in wigle, a defect is incorrectly reported by the analysis
as an instance of both Pattern 1 and Pattern 2, while in reality it is
only an instance of Pattern 2. The cause of this imprecision will be
discussed shortly.

Two conclusions can be drawn from these measurements. First,
the analysis successfully detects various defects across the ana-

Application |D| |S| |D-S| |S—D|
droidar 1 2 0 1
osmdroid 2 2 0 0
recycle 1 1 0 0
sofia 1 1 0 0
ushahidi 1 3 0 2

Table 2: Defects reported: GreenDroid (D) vs static analysis (S).

lyzed applications. Even the “fixed” versions are not free of de-
fects: for example, we discovered two defects in ushahidi-f that
were not reported in the work on GreenDroid, and were missed
by the application developers when ushahidi was fixed to obtain
ushahidi-f (in fact, these two defects are quite similar to the one
that was fixed). A similar situation was observed for droidar. This
observation indicates the benefits of static detection, compared to
run-time detection which depends on hard-to-automate triggering
of the problematic behavior. Of course, static detection has it own
limitations, with the main one being false positives. However, the
experimental results for the 15 benchmarks shown in Table 1 indi-
cate that the proposed analysis achieves very high precision.

False positive The false positive for wigle is because the de-
veloper decided to override standard method Activity.finish
with a custom version which removes the listener. When method
finish is invoked on an activity (by the application code or by the
framework code), this causes the termination of the activity. How-
ever, this method is not a callback that is defined as part of the
lifecycle of an activity, and is rarely overridden by applications. In
other words, £inish can be called to force termination, but it is not
executed as part of the actual termination process. Thus, finish
does not appear on WTG edges (although it is accounted for dur-
ing WTG creation [48]). In fact, termination could happen even
if finish is not called: for example, the system may silently ter-
minate an activity to recover memory [14]. The Android lifecycle
model guarantees that onDestroy will be called in all scenarios,
and this is where the listener should be removed, rather than in
finish. This example indicates that the developer misunderstands
the activity lifecycle. During the manual examination of this defect
on a real device we did observe that the location listener is prop-
erly released, and decided to classify the defect as a false positive,
although one could argue that it violates Android guidelines.

Comparison with GreenDroid To compare the proposed static
detection with the most relevant prior work, Table 4 considers the
UI thread defects [w,!] reported by the dynamic analysis approach
in GreenDroid. For a given application, let D be the set of these
defects, while S be the set of defects reported by our static analysis.
The sizes of these sets are given in the second and third column in
Table 4. The next two columns show the sizes of sets D — S and
S — D, respectively. As the next-to-last column shows, our static
analysis reported all defects from the prior dynamic analysis work.
The last column shows how many of the statically-detected defects
were not reported by GreenDroid; for two of the applications, there
are additional defects we discovered statically (and these defects
are still present in the fixed versions from GreenDroid). A possible
explanation of this result is that the run-time exploration strategy
in GreenDroid did not trigger the necessary GUI events; in general,
comprehensive run-time GUI coverage is challenging [8].

Overall, these results indicate that static detection could be more
effective than dynamic detection. At the same time, it is impor-
tant to consider the relative strengths and weaknesses of both ap-
proaches: while the static analysis can model more comprehen-
sively certain behaviors of the UI thread, other aspects of run-

193

time semantics are not modeled statically (e.g., asynchronous tasks
and services) and dynamic analysis does capture additional defects
for such behaviors. This highlights the need for more comprehen-
sive static control-flow analyses for Android, as well as hybrid
static/dynamic approaches for defect detection.

Summary On 15 Android applications, the proposed analysis
exhibits low cost and high precision. It discovers all GUI-related
leaking-listener defects discovered by GreenDroid, as well as three
new ones. Additional defects were discovered in 5 applications not
analyzed in prior work. With one exception, all reported defects
are observable at run time. These results indicate that the analysis
is suitable for use in real-world static checking tools.

5. Related Work

Energy analysis for Android There is a growing body of work
on analyzing and optimizing the energy consumption of mobile de-
vices. Studies have shown [6, 25] that battery drain issues on an An-
droid device could be caused by poorly managed background ac-
tivities and inappropriate invocations to energy-related APIs. Qian
et al. [38] developed a resource usage profiler to uncover ineffi-
cient usage of radio and network resources. Some energy optimiz-
ers [22, 26] could reduce the energy consumption when an applica-
tion is displayed on OLED screens, by modifying the color scheme;
these techniques do not consider any energy-related defects. Oliner
et al. [33] used statistical battery discharge rate data of smartphone
applications in a community of devices in order to uncover bat-
tery draining applications. A similar approach is used by Min et al.
[30]. Though this method reveals accurate results, it requires run-
time data collected from a large number of devices that have the
target application installed, which is not always possible.

An approach from Zhang et al. [49] uses dynamic taint analy-
sis to detect design flaws related to network operations. However,
this approach introduces relatively high run-time overhead and can-
not be used to analyze other energy defects. Early work of energy-
aware profiling [19, 21, 34, 35] used dynamic analysis to detect en-
ergy hotspots in Android applications. However, as with other pro-
gram profiling techniques, they require comprehensive test cases
to execute the application on the device. Furthermore, an energy
hotspot may not always point to the underlying energy-related de-
fect. For example, if there is an energy leak due to mismanagement
of lifecycle callbacks, these callbacks (which are typically short
lived) are unlikely to be reported as hotspots.

Following their work on energy profiling [34, 35], Pathak et al.
defined a static analysis to detect energy-related defects [36]. This
analysis aims to model control flow along multiple threads of exe-
cution and to detect code paths for which energy-related resources
(e.g., location listeners and wake locks) are not properly released.
The control-flow modeling is very simplistic: while some sim-
ple sequences of lifecycle callbacks are considered in the analy-
sis, there is no modeling of interleaving of callbacks across mul-
tiple windows, nor is there modeling of the window stack. Fur-
thermore, the approach requires human involvement: the developer
is expected to specify expected invocation orders of widget event
handlers, which is impractical and may lead to limited coverage of
possible behaviors. In our approach, the order of callbacks in the Ul
thread is determined automatically through a more general and pre-
cise analysis. The vast majority of defects in this work (e.g., wake
lock leaks) are reported for service components running concur-
rently with the UI thread. There are only two applications for which
location-awareness defects are reported. One defect is in ushahidi
(already discussed earlier); the same defect is discovered by Green-
Droid and by our approach, but we also detect two other similar
defects not reported by [36] or by GreenDroid. The other case is an
application whose code is not available anymore (dead URL) and

whose version number is not specified. In future work, it would
be interesting to restate the entire approach by Pathak et al. as a
fully-automated analysis of multiple threads of execution, account-
ing for the advances in control-flow analysis for Android that have
been developed since 2012 when this early work was published.

Banerjee et al. [4] developed an energy bug and hotspot detec-
tion tool based on dynamic analysis. In their work, they use a mod-
ified version of Dynodroid [29], an Android event input generation
system, to generate a model of the GUI. The model is then used to
trigger sequences of GUI events which are profiled for energy us-
age. Event sequences that match certain heuristic conditions are re-
ported as defects or hotspots. As recent work shows [8], achieving
high run-time coverage for Android applications is a difficult prob-
lem because of the event-driven and framework-based control flow
and data flow. Furthermore, defect detection is based on heuristics
utilizing run-time measurements, and does not identify the callback
sequences or code locations that are responsible for the actual de-
fect. Static analysis such as ours can be more comprehensive and
can be more easily deployed in the development environment be-
cause it does not require the physical measurements of voltage and
current needed for energy profiling in [4]. On the other hand, as
with any dynamic analysis, one advantage is the potentially higher
precision due to the available run-time information; in contrast,
static analysis may exhibit false positives. This prior work reports
one location listener leaked by an activity, but our static analysis
does not report this defect. We examined the code and confirmed
that this is indeed not a defect: there is no execution that would
trigger a leak, and it is unclear why [4] reports it.

GreenDroid [27] uses Java PathFinder (JPF) to trigger various
GUI event sequences based on a model of GUI structure and be-
havior. The behavioral model is manually extracted from Android
specifications, but it does not provide the same level of precision
and detail as our WTG representation. During run-time exploration,
lifetime constraints similar to our Pattern 1 are checked, together
with dynamic information flow measurements to track whether
sensory data is underutilized. The applications that exhibited Ul
leaks of location listeners in their studies were also used in our
experiments, as shown in Tables 1 and 4. All such defects were
successfully detected statically. Furthermore, even after their bug
fixes, we discovered three additional defects. On the other hand
their approach detects leaks in services, which are not modeled by
our static analysis. Similarly to the dynamic analysis from [4], the
challenges of obtaining comprehensive run-time coverage of rele-
vant behaviors presents an obstacle for this technique, with further
complications due to JPF limitations. As usual, static analysis (ex-
emplified by our low-cost, high-precision technique) allows more
comprehensive reasoning about possible run-time behaviors. An in-
teresting direction for future work is to develop a hybrid approach
which uses static analysis to detect conservatively a set of potential
defects and to focus subsequent dynamic exploration on the corre-
sponding run-time behaviors.

Static control-flow analysis for Android A significant body of
work on security analysis [7, 9, 11, 17, 20, 23, 28, 32, 51] uses
static modeling of certain aspects of Android control flow (and the
related data flow). These approaches do not provide a comprehen-
sive model of GUI control flow and the possible sequences of call-
backs. A related static analysis [3] constructs an activity transition
graph (used for run-time GUI exploration) but without capturing
the general GUI effects of callbacks and the window stack changes.
Other static analyses also model the sequences of callbacks in An-
droid, for the purposes of race detection (e.g., [24]), leak analysis
(e.g., [18]), and static checking (e.g., [37, 50]); all these approaches
employ ad hoc control-flow modeling that lacks generality.
FlowDroid [2] uses an artificial main method to represent the
effects of callbacks from the Android framework to the application

194

code. This main method encodes possible sequences of callbacks,
but does not account for the full generality of GUI effects of event
handlers, and does not represent precisely the interleaving of call-
backs that span multiple activities and their lifetimes. We developed
a more comprehensive solution [46—48] which encodes the relevant
control-flow information in the window transition graph described
earlier. This work also defined the modeling of the window stack. In
addition to serving as basis for the defect analysis presented here,
the WTG representation and traversals could potentially be useful
for other static detection techniques that require control-flow analy-
sis of event/callback-driven Android behavior, perhaps by adapting
more general typestate analyses [10, 31].

6. Conclusions

‘We propose a static analysis for detection of energy-related defects
in the UI logic of an Android application. The technical founda-
tion for this analysis is the static modeling of possible sequences
of window transitions and their related callbacks. By identifying
certain such sequences, based on the state of the window stack, we
define precisely two patterns of behavior in which location listeners
are leaking. Control-flow analysis of individual callbacks is com-
bined with analysis of callback sequences to identify instances of
these patterns. Seventeen known and new defects were detected in
previously-analyzed and never-analyzed applications. All but one
of the reported defects are observable at run time. The evaluation
also shows that the cost of the analysis is low.

Two directions for future work are natural extensions of our
current approach. First, the general pattern for control-flow analysis
is not specific to energy-related defects. A variety of other defect
patterns can be defined, based on some notion of “interesting”
WTG paths and relevant operations inside the callbacks along such
paths. For example, one could consider resource leaks (e.g., for
heap memory, native memory, JNI references, or threads [45]) or
more general typestate-like properties [10, 31] that need to be
tracked across sequences of callbacks. Second, the control-flow
analysis could be generalized to represent multiple threads running
concurrently with the main Ul thread, both for general Java threads
and for Android-specific constructs such as asynchronous tasks
and services. Such generalizations can be used as basis for static
detection of both energy-related defects and other categories of
problematic patterns of behavior.

Acknowledgments

We thank the CC reviewers for their valuable feedback. This ma-
terial is based upon work supported by the U.S. National Sci-
ence Foundation under CCF-1319695 and CCF-1526459, and by
a Google Faculty Research Award.

References

[1] A. Aho, M. Lam, R. Sethi, and J. Ullman.
Techniques, and Tools. Addison-Wesley, 2007.

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. FlowDroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps. In PLDI, pages 259-269, 2014.

[3] T. Azim and 1. Neamtiu.
systematic testing of Android apps.
2013.

[4] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury.
Detecting energy bugs and hotspots in mobile apps. In FSE, pages
588-598, 2014.

[51 A. Bartel, J. Klein, Y. L. Traon, and M. Monperrus. Dexpler: Convert-
ing Android Dalvik bytecode to Jimple for static analysis with Soot.
In SOAP, 2012.

Compilers: Principles,

Targeted and depth-first exploration for
In OOPSLA, pages 641-660,

[6] X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta, and R. Vannithamby.
Smartphone background activities in the wild: Origin, energy drain,
and optimization. In MobiCom, pages 40-52, 2015.

[7] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-
application communication in Android. In MobiSys, pages 239-252,
2011.

[8] S. R. Choudhary, A. Gorla, and A. Orso. Automated test input gener-
ation for Android: Are we there yet? In ASE, pages 429440, 2015.

[9] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy: Semantics-
based detection of Android malware through static analysis. In FSE,
pages 576-587, 2014.

[10] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective
typestate verification in the presence of aliasing. In ISSTA, pages 133—
144, 2006.

[11] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. SCanDroid: Automated
security certification of Android applications. Technical Report CS-
TR-4991, University of Maryland, College Park, 2009.

[12] Gartner, Inc. Worldwide traditional PC, tablet, ultramobile and mobile
phone shipments, Mar. 2014. www.gartner.com/newsroom/id/
2692318.

[13] Google. Tasks and back stack. developer.android.com/guide/
components/tasks-and-back-stack.html, 2015.

[14] Google. Managing the activity lifecycle. developer.android.com/
training/basics/activity-lifecycle.

[15] Google. Android dialogs. developer.android.com/guide/
topics/ui/dialogs.html, 2015.

[16] Google. Location strategies. developer.android.com/guide/
topics/location/strategies.html, 2015.

[17] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection of
capability leaks in stock Android smartphones. In NDSS, 2012.

[18] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang. Characterizing
and detecting resource leaks in Android applications. In ASE, pages
389-398, 2013.

[19] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating mobile
application energy consumption using program analysis. In ICSE,
pages 92-101, 2013.

[20] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang. AsDroid: Detect-
ing stealthy behaviors in Android applications by user interface and
program behavior contradiction. In ICSE, pages 1036-1046, 2014.

[21] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan. Calculating source
line level energy information for Android applications. In ISSTA,
pages 78-89, 2013.

[22] D. Li, A. H. Tran, and W. G. J. Halfond. Nyx: A display energy
optimizer for mobile web apps. In FSE, pages 958-961, 2015.

[23] S. Liang, A. W. Keep, M. Might, S. Lyde, T. Gilray, P. Aldous, and
D. Van Horn. Sound and precise malware analysis for Android via
pushdown reachability and entry-point saturation. In SPSM, pages
21-32,2013.

[24] Y. Lin, C. Radoi, and D. Dig. Retrofitting concurrency for Android
applications through refactoring. In FSE, pages 341-352, 2014.

[25] M. Linares-Vasquez, G. Bavota, C. Bernal-Cérdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk. Mining energy-greedy API usage
patterns in Android apps: An empirical study. In MSR, pages 211,
2014.

M. Linares-Vdsquez, G. Bavota, C. E. B. Cérdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk. Optimizing energy consumption
of GUIs in Android apps: A multi-objective approach. In FSE, pages
143-154, 2015.

Y. Liu, C. Xu, S. C. Cheung, and J. Lu. GreenDroid: Automated
diagnosis of energy inefficiency for smartphone applications. TSE,
40:911-940, Sept. 2014.

L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX: Statically vetting

Android apps for component hijacking vulnerabilities. In CCS, pages
229-240, 2012.

[26]

(271

[28]

195

[29] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input genera-
tion system for Android apps. In FSE, pages 224-234, 2013.

[30] C. Min, Y. Lee, C. Yoo, S. Kang, S. Choi, P. Park, I. Hwang, Y. Ju,
S. Choi, and J. Song. PowerForecaster: Predicting smartphone power
impact of continuous sensing applications at pre-installation time. In
SenSys, pages 31-44, 2015.

[31] N. Naeem and O. Lhotdk. Typestate-like analysis of multiple interact-
ing objects. In OOPSLA, pages 347-366, 2008.

[32] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. le Traon. Effective inter-component communication mapping in
Android with Epicc. In USENIX Security, 2013.

[33] A.J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and S. Tarkoma. Carat:
Collaborative energy diagnosis for mobile devices. In SenSys, pages
10:1-10:14, 2013.

[34] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang. Fine-
grained power modeling for smartphones using system call tracing.
In EuroSys, pages 153-168, 2011.

[35] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside
my app? In EuroSys, pages 2942, 2012.

[36] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff. What is keeping my
phone awake?: Characterizing and detecting no-sleep energy bugs in
smartphone apps. In MobiSys, pages 267-280, 2012.

[37] E. Payet and F. Spoto. Static analysis of Android programs. IST, 54
(11):1192-1201, 2012.

[38] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck. Pro-
filing resource usage for mobile applications: A cross-layer approach.
In MobiSys, pages 321-334, 2011.

[39] T. Reps. Program analysis via graph reachability. Information and
Software Technology, 40(11-12):701-726, 1998.

[40] A. Rountev and D. Yan. Static reference analysis for GUI objects in
Android software. In CGO, pages 143-153, 2014.

[41] A. Rountev, D. Yan, S. Yang, H. Wu, Y. Wang, and H. Zhang.
GATOR: Program Analysis Toolkit For Android. web.cse.ohio-
state.edu/presto/software/gator.

[42] M. Sharir and A. Pnueli. Two approaches to interprocedural data
flow analysis. In S. Muchnick and N. Jones, editors, Program Flow
Analysis: Theory and Applications, pages 189-234. Prentice Hall,
1981.

[43] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and
V. Sundaresan. Optimizing Java bytecode using the Soot framework:
Is it feasible? In CC, pages 18-34, 2000.

[44] D. Yan. Program Analyses for Understanding the Behavior and
Performance of Traditional and Mobile Object-Oriented Software.
PhD thesis, Ohio State University, July 2014.

[45] D. Yan, S. Yang, and A. Rountev. Systematic testing for resource leaks
in Android applications. In ISSRE, pages 411-420, 2013.

[46] S. Yang. Static Analyses of GUI Behavior in Android Applications.
PhD thesis, Ohio State University, Sept. 2015.

[47] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev. Static control-flow
analysis of user-driven callbacks in Android applications. In ICSE,
pages 89-99, 2015.

[48] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, and A. Rountev. Static
window transition graphs for Android. In ASE, pages 658-668, 2015.

[49] L. Zhang, M. S. Gordon, R. P. Dick, Z. M. Mao, P. Dinda, and
L. Yang. ADEL: An automatic detector of energy leaks for smartphone
applications. In CODES+ISSS, pages 363-372, 2012.

[50] S. Zhang, H. Lii, and M. D. Ernst. Finding errors in multithreaded
GUI applications. In ISSTA, pages 243-253, 2012.

[51] C.Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou. Smart-
Droid: An automatic system for revealing Ul-based trigger conditions
in Android applications. In SPSM, pages 93-104, 2012.

